metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dimethyl[2-oxido-1-naphthaldehyde (4-hvdroxvlbenzovl)hvdrazonatoltin(IV) dichloromethane solvate

Jichun Cui, Handong Yin* and Yanling Qiao

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059 People's Republic of China Correspondence e-mail: handongyin@lcu.edu.cn

Received 15 November 2007; accepted 17 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.029; wR factor = 0.087; data-to-parameter ratio = 14.4.

In the molecular structure of the title complex, $[Sn(CH_3)_2]$ -(C₁₈H₁₂N₂O₃)]·CH₂Cl₂, the Sn atom is in a distorted trigonalbipyramidal environment, with Sn-O distances of 2.083 (3) and 2.143 (2) Å. In the crystal structure, the molecules are stabilized by intermolecular O-H···N hydrogen bonds, giving rise to the formation of one-dimensional chains.

Related literature

For the structure of a similar compound, $[Sn(C_6H_5)_2 (C_{14}H_{10}N_2O_3)] \cdot C_2H_6O$, see: Hong *et al.* (2006).

Experimental

Crystal data $[Sn(CH_3)_2(C_{18}H_{12}N_2O_3)]\cdot CH_2Cl_2$ $M_r = 537.98$ Monoclinic, $P2_1/n$ a = 11.982 (2) Å b = 9.5097 (18) Å c = 19.546 (4) Å $\beta = 103.695 (2)^{\circ}$

V = 2163.9 (7) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 1.45 \text{ mm}^{-1}$ T = 298 (2) K 0.55 \times 0.41 \times 0.29 mm

Data collection

```
Siemens SMART CCD area-
  detector diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.502, T_{\max} = 0.678
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	262 parameters
$wR(F^2) = 0.087$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.58 \text{ e} \text{ Å}^{-3}$
3777 reflections	$\Delta \rho_{\rm min} = -0.63 \text{ e } \text{\AA}^{-3}$

10791 measured reflections

 $R_{\rm int} = 0.035$

3777 independent reflections

3000 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Sn1-O1	2.083 (3)	Sn1-C20	2.109 (4)
Sn1-O2	2.143 (2)	Sn1-C19	2.114 (4)
Sn1-N1	2.166 (3)		
D1-Sn1-C20	94.20 (15)	C19-Sn1-O2	97.27 (15)
D1-Sn1-C19	95.68 (15)	O1-Sn1-N1	82.46 (10)
C20-Sn1-C19	123.96 (18)	C20-Sn1-N1	124.14 (14)
O1-Sn1-O2	154.97 (10)	C19-Sn1-N1	111.82 (16)
C20-Sn1-O2	96.18 (14)	O2-Sn1-N1	72.86 (9)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O3-H3\cdots N2^i$	0.82	2.03	2.802 (4)	158
Summatry and (i)	x 3 1	- 13		

Symmetry code: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We acknowledge financial support from the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University, People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2025).

References

Hong, M., Yin, H.-D. & Wang, D.-Q. (2006). Acta Cryst. E62, m1504-m1505. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2007). E63, m3138 [doi:10.1107/S1600536807060102]

Dimethyl[2-oxido-1-naphthaldehyde (4-hydroxylbenzoyl)hydrazonato]tin(IV) dichloromethane solvate

J. Cui, H. Yin and Y. Qiao

Comment

The molecular structure of the title compound, (I), is shown in Fig. 1. The Sn atom has a distorted trigonal-bipyramidal geometry, with atoms O1 and O3 in axial positions [O1—Sn1—O2 = 154.97 (10)°], and atoms C19, C20 and N1 in equatorial positions. The sum of the equatorial angles C19—Sn1—C20, C19—Sn1—N1 and C20—Sn—N1 is 359.92 °, indicating approximate coplanarity for these atoms (Table 1). The Sn1—N1 bond length of 2.166 (3) Å is close to the sum of the non-polar covalent radii [2.15 Å], indicating a strong Sn—N interaction. The O atoms coordinate to the Sn atom with one short [2.083 (3) Å] and one long [2.143 (2) Å] bond. These distances are similar to those reported for compound $[Sn(C_6H_5)_2(C_{14}H_{10}N_2O_3)]\cdot C_2H_6O$ (*M*. Hong *et al.*, 2006)

The crystal packing in the unit cell (Fig. 2) shows that symmetry related molecules are connected by intermolecular O—H···N hydrogen bonds to form one-dimensional chains (Table 2).

Experimental

The reaction was carried out under a nitrogen atmosphere. 2-hydroxy-1-naphthaldehyde 4-hydroxybenzhydrazone (1 mmol) and sodium ethoxide (1.2 mmol) were added to 30 ml of benzene in a Schlenk flask and stirred for 0.5 h. Dimethyltin dichloride (1 mmol) was then added and the mixture stirred for 4 h at 313 K. The resulting clear solution was evaporated under vacuum. The product was crystallized from a mixture of dichloromethane/methanol (1:1). Analysis calculated for $C_{21}H_{20}Cl_2N_2O_3Sn$ (Mr = 538.01): C, 46.88; H, 3.75; N, 5.21, found: C, 46.75; H, 3.70; N, 5.34.

Refinement

The H atoms were fixed geometrically and treated as riding atoms: O—H = 0.82 Å, with $U_{iso}(H) = 1.5U_{eq}(O)$, and C—H distances = 0.93 – 0.97 Å, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of complex (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

Fig. 2. The crystal packing of the complex (I), showing the hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Dimethyl[2-oxido-1-naphthaldehyde (4-hydroxylbenzoyl)hydrazonato]tin(IV) dichloromethane solvate

 $F_{000} = 1072$

 $\theta = 2.3-27.1^{\circ}$ $\mu = 1.45 \text{ mm}^{-1}$ T = 298 (2) KBlock, orange

 $D_{\rm x} = 1.651 \text{ Mg m}^{-3}$ Mo *K* α radiation $\lambda = 0.71073 \text{ Å}$

 $0.55 \times 0.41 \times 0.29 \text{ mm}$

Cell parameters from 5069 reflections

Crystal data
$[Sn(CH_3)_2(C_{18}H_{12}N_2O_3)]$ ·CH ₂ Cl ₂
$M_r = 537.98$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 11.982 (2) Å
b = 9.5097 (18) Å
c = 19.546 (4) Å
$\beta = 103.695 \ (2)^{\circ}$
$V = 2163.9 (7) \text{ Å}^3$
Z = 4

Data collection

3777 independent reflections
3000 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.035$
$\theta_{\text{max}} = 25.0^{\circ}$
$\theta_{\min} = 1.8^{\circ}$
$h = -11 \rightarrow 14$
$k = -11 \rightarrow 10$
$l = -23 \rightarrow 22$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.087$	$w = 1/[\sigma^2(F_0^2) + (0.0484P)^2 + 1.2287P]$ where $P = (F_0^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\text{max}} = 0.001$
3777 reflections	$\Delta \rho_{\text{max}} = 0.58 \text{ e} \text{ Å}^{-3}$
262 parameters	$\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

	x	у	Z	$U_{\rm iso}^*/U_{\rm eq}$
Sn1	0.69105 (2)	0.12092 (3)	1.031909 (12)	0.03692 (11)
Cl1	0.48588 (13)	0.75043 (17)	0.18170 (7)	0.0890 (4)
Cl2	0.67495 (19)	0.5571 (2)	0.18748 (11)	0.1248 (7)
N1	0.8191 (2)	0.1238 (3)	0.97009 (13)	0.0334 (7)
N2	0.7961 (2)	0.0389 (3)	0.90942 (14)	0.0340 (7)
01	0.8042 (2)	0.2621 (3)	1.09417 (14)	0.0538 (8)
02	0.6263 (2)	-0.0054 (3)	0.94030 (13)	0.0436 (6)
03	0.5513 (2)	-0.4064 (3)	0.67608 (13)	0.0416 (6)
Н3	0.6052	-0.4350	0.6607	0.062*
C1	0.9167 (3)	0.1905 (4)	0.98265 (18)	0.0344 (8)
H1	0.9620	0.1750	0.9507	0.041*
C2	0.9629 (3)	0.2840 (4)	1.03904 (17)	0.0332 (8)
C3	0.9035 (3)	0.3163 (4)	1.09172 (19)	0.0376 (8)
C4	0.9531 (3)	0.4126 (4)	1.1455 (2)	0.0429 (9)
H4	0.9132	0.4363	1.1792	0.051*
C5	1.0565 (3)	0.4709 (4)	1.14893 (19)	0.0415 (9)
Н5	1.0868	0.5322	1.1857	0.050*
C6	1.1205 (3)	0.4416 (4)	1.09835 (19)	0.0361 (8)
C7	1.0735 (3)	0.3485 (3)	1.04206 (18)	0.0322 (8)
C8	1.1405 (3)	0.3236 (5)	0.9928 (2)	0.0473 (10)
H8	1.1117	0.2658	0.9543	0.057*
С9	1.2465 (4)	0.3825 (5)	1.0005 (2)	0.0532 (11)
Н9	1.2887	0.3635	0.9673	0.064*
C10	1.2928 (4)	0.4705 (4)	1.0569 (2)	0.0525 (11)
H10	1.3658	0.5084	1.0619	0.063*
C11	1.2306 (3)	0.5003 (4)	1.1045 (2)	0.0449 (9)
H11	1.2608	0.5604	1.1419	0.054*
C12	0.6966 (3)	-0.0228 (4)	0.89995 (17)	0.0314 (8)
C13	0.6610 (3)	-0.1220 (3)	0.83962 (17)	0.0315 (7)
C14	0.5467 (3)	-0.1606 (4)	0.81672 (18)	0.0379 (9)
H14	0.4929	-0.1227	0.8389	0.045*
C15	0.5108 (3)	-0.2539 (4)	0.76193 (18)	0.0376 (8)
H15	0.4335	-0.2773	0.7470	0.045*
C16	0.5909 (3)	-0.3127 (4)	0.72916 (17)	0.0326 (8)
C17	0.7056 (3)	-0.2758 (4)	0.75147 (17)	0.0334 (8)
H17	0.7595	-0.3153	0.7299	0.040*
C18	0.7399 (3)	-0.1811 (4)	0.80529 (18)	0.0343 (8)
H18	0.8169	-0.1558	0.8192	0.041*
C19	0.7199 (4)	-0.0443 (5)	1.1064 (2)	0.0606 (12)
H19A	0.7891	-0.0933	1.1043	0.091*
H19B	0.6563	-0.1085	1.0959	0.091*
H19C	0.7274	-0.0063	1.1528	0.091*
C20	0.5496 (3)	0.2591 (4)	1.0161 (2)	0.0506 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H20A	0.5543	0.3256	0.9800	0.076*
H20B	0.5506	0.3083	1.0592	0.076*
H20C	0.4796	0.2063	1.0021	0.076*
C21	0.5843 (6)	0.6352 (6)	0.2328 (3)	0.095 (2)
H21A	0.6301	0.6862	0.2726	0.114*
H21B	0.5427	0.5623	0.2510	0.114*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.03455 (16)	0.04512 (18)	0.03349 (15)	-0.00971 (11)	0.01285 (11)	-0.00709 (11)
C11	0.0785 (10)	0.1087 (12)	0.0733 (8)	0.0103 (8)	0.0050 (7)	-0.0048 (8)
Cl2	0.1263 (16)	0.1530 (17)	0.1148 (14)	0.0467 (14)	0.0675 (12)	0.0267 (13)
N1	0.0377 (17)	0.0354 (17)	0.0292 (14)	-0.0092 (13)	0.0118 (13)	-0.0069 (12)
N2	0.0364 (17)	0.0380 (17)	0.0280 (14)	-0.0083 (13)	0.0089 (13)	-0.0077 (12)
01	0.0437 (16)	0.073 (2)	0.0493 (15)	-0.0244 (15)	0.0208 (13)	-0.0268 (15)
O2	0.0368 (14)	0.0573 (17)	0.0403 (14)	-0.0180 (13)	0.0164 (12)	-0.0172 (13)
O3	0.0390 (15)	0.0496 (16)	0.0367 (13)	-0.0041 (12)	0.0101 (11)	-0.0129 (12)
C1	0.0289 (19)	0.039 (2)	0.0370 (18)	-0.0049 (16)	0.0116 (15)	-0.0013 (16)
C2	0.0305 (19)	0.0351 (19)	0.0321 (17)	-0.0005 (15)	0.0039 (15)	-0.0008 (15)
C3	0.033 (2)	0.041 (2)	0.0395 (19)	-0.0044 (17)	0.0109 (16)	-0.0063 (16)
C4	0.041 (2)	0.048 (2)	0.040 (2)	-0.0049 (18)	0.0113 (17)	-0.0133 (17)
C5	0.042 (2)	0.038 (2)	0.041 (2)	-0.0043 (17)	0.0037 (17)	-0.0075 (16)
C6	0.035 (2)	0.0258 (18)	0.042 (2)	-0.0033 (15)	-0.0009 (16)	0.0030 (15)
C7	0.0312 (18)	0.0283 (18)	0.0344 (17)	0.0018 (15)	0.0027 (15)	0.0053 (14)
C8	0.041 (2)	0.057 (3)	0.044 (2)	-0.0080 (19)	0.0109 (18)	-0.0068 (19)
C9	0.038 (2)	0.066 (3)	0.060 (3)	-0.004 (2)	0.020 (2)	-0.003 (2)
C10	0.038 (2)	0.054 (3)	0.064 (3)	-0.016 (2)	0.009 (2)	0.004 (2)
C11	0.038 (2)	0.041 (2)	0.052 (2)	-0.0076 (17)	0.0029 (19)	0.0002 (19)
C12	0.0326 (19)	0.0326 (19)	0.0293 (17)	-0.0019 (15)	0.0078 (15)	0.0018 (14)
C13	0.0341 (19)	0.0301 (18)	0.0292 (16)	-0.0038 (15)	0.0057 (14)	0.0046 (14)
C14	0.036 (2)	0.047 (2)	0.0358 (18)	-0.0066 (17)	0.0173 (16)	-0.0112 (16)
C15	0.0292 (19)	0.046 (2)	0.0375 (18)	-0.0079 (16)	0.0087 (15)	-0.0061 (17)
C16	0.0353 (19)	0.0326 (19)	0.0293 (17)	-0.0009 (15)	0.0063 (15)	0.0005 (14)
C17	0.033 (2)	0.035 (2)	0.0331 (17)	0.0032 (15)	0.0093 (15)	-0.0008 (15)
C18	0.0287 (18)	0.0341 (19)	0.0380 (18)	-0.0020 (15)	0.0040 (15)	0.0019 (15)
C19	0.074 (3)	0.059 (3)	0.050 (2)	-0.005 (2)	0.016 (2)	0.004 (2)
C20	0.045 (2)	0.054 (3)	0.057 (2)	-0.002 (2)	0.019 (2)	-0.002 (2)
C21	0.121 (6)	0.093 (4)	0.083 (4)	0.028 (4)	0.049 (4)	0.017 (3)

Geometric parameters (Å, °)

Sn1—O1	2.083 (3)	C8—C9	1.364 (6)
Sn1—O2	2.143 (2)	С8—Н8	0.9300
Sn1—N1	2.166 (3)	C9—C10	1.391 (6)
Sn1—C20	2.109 (4)	С9—Н9	0.9300
Sn1—C19	2.114 (4)	C10-C11	1.353 (6)
Cl1—C21	1.741 (6)	C10—H10	0.9300
Cl2—C21	1.723 (6)	C11—H11	0.9300

N1—C1	1.302 (4)	C12—C13	1.492 (5)
N1—N2	1.407 (4)	C13—C14	1.386 (5)
N2—C12	1.302 (4)	C13—C18	1.400 (5)
O1—C3	1.308 (4)	C14—C15	1.378 (5)
O2—C12	1.294 (4)	C14—H14	0.9300
O3—C16	1.365 (4)	C15—C16	1.391 (5)
O3—H3	0.8200	C15—H15	0.9300
C1—C2	1.422 (5)	C16—C17	1.384 (5)
C1—H1	0.9300	C17—C18	1.372 (5)
C2—C3	1.417 (5)	С17—Н17	0.9300
C2—C7	1.450 (5)	C18—H18	0.9300
C3—C4	1.414 (5)	C19—H19A	0.9600
C4—C5	1.343 (5)	C19—H19B	0.9600
C4—H4	0.9300	C19—H19C	0.9600
C5—C6	1.415 (5)	C20—H20A	0.9600
С5—Н5	0.9300	C20—H20B	0.9600
C6—C11	1.411 (5)	С20—Н20С	0.9600
C6—C7	1.420 (5)	C21—H21A	0.9700
C7—C8	1.411 (5)	C21—H21B	0.9700
O1—Sn1—C20	94.20 (15)	C11—C10—H10	120.3
O1—Sn1—C19	95.68 (15)	C9—C10—H10	120.3
C20—Sn1—C19	123.96 (18)	C10—C11—C6	120.9 (4)
O1—Sn1—O2	154.97 (10)	C10-C11-H11	119.5
C20—Sn1—O2	96.18 (14)	C6—C11—H11	119.5
C19—Sn1—O2	97.27 (15)	O2—C12—N2	124.2 (3)
O1—Sn1—N1	82.46 (10)	O2—C12—C13	117.2 (3)
C20—Sn1—N1	124.14 (14)	N2-C12-C13	118.6 (3)
C19—Sn1—N1	111.82 (16)	C14—C13—C18	117.8 (3)
O2—Sn1—N1	72.86 (9)	C14—C13—C12	119.9 (3)
C1—N1—N2	115.2 (3)	C18—C13—C12	122.3 (3)
C1—N1—Sn1	128.6 (2)	C15—C14—C13	121.6 (3)
N2—N1—Sn1	116.09 (19)	C15—C14—H14	119.2
C12—N2—N1	111.6 (3)	C13—C14—H14	119.2
C3—O1—Sn1	134.8 (2)	C14—C15—C16	119.6 (3)
C12—O2—Sn1	114.9 (2)	C14—C15—H15	120.2
С16—О3—Н3	109.5	C16—C15—H15	120.2
N1—C1—C2	128.1 (3)	O3—C16—C17	123.1 (3)
N1—C1—H1	115.9	O3—C16—C15	117.3 (3)
C2—C1—H1	115.9	C17—C16—C15	119.6 (3)
C3—C2—C1	121.9 (3)	C18—C17—C16	120.2 (3)
C3—C2—C7	119.4 (3)	C18—C17—H17	119.9
C1—C2—C7	118.7 (3)	C16—C17—H17	119.9
O1—C3—C4	117.0 (3)	C17—C18—C13	121.1 (3)
O1—C3—C2	123.9 (3)	C17—C18—H18	119.4
C4—C3—C2	119.0 (3)	C13—C18—H18	119.4
C5—C4—C3	121.6 (4)	Sn1—C19—H19A	109.5
C5—C4—H4	119.2	Sn1—C19—H19B	109.5
C3—C4—H4	119.2	H19A—C19—H19B	109.5
C4—C5—C6	122.0 (3)	Sn1—C19—H19C	109.5

supplementary materials

C4 C5 H5	110.0	H10A C10 H10C	100.5
C6 C5 H5	119.0	H10R C10 H10C	109.5
	119.0		109.5
$C_{11} = C_{0} = C_{3}$	120.8(3)	$S_{n1} = C_{20} = H_{20}R$	109.5
	120.2(4)		109.5
C3-C6-C7	118.9 (3)	H20A-C20-H20B	109.5
	116.6 (3)	$Sn1 - C_{20} - H_{20}C$	109.5
C8—C7—C2	124.3 (3)	H20A-C20-H20C	109.5
C6—C7—C2	119.1 (3)	H20B—C20—H20C	109.5
C9—C8—C7	121.4 (4)	Cl2—C21—Cl1	113.6 (3)
С9—С8—Н8	119.3	Cl2—C21—H21A	108.8
С7—С8—Н8	119.3	Cl1—C21—H21A	108.8
C8—C9—C10	121.3 (4)	Cl2—C21—H21B	108.8
С8—С9—Н9	119.3	Cl1—C21—H21B	108.8
С10—С9—Н9	119.3	H21A—C21—H21B	107.7
C11—C10—C9	119.4 (4)		
O1—Sn1—N1—C1	2.6 (3)	C11—C6—C7—C8	-2.2 (5)
C20—Sn1—N1—C1	92.6 (3)	C5—C6—C7—C8	179.6 (3)
C19—Sn1—N1—C1	-90.5 (3)	C11—C6—C7—C2	176.8 (3)
O2—Sn1—N1—C1	178.4 (3)	C5—C6—C7—C2	-1.4 (5)
O1—Sn1—N1—N2	-179.8 (2)	C3—C2—C7—C8	179.7 (4)
C20—Sn1—N1—N2	-89.8 (3)	C1—C2—C7—C8	-0.8(5)
C19—Sn1—N1—N2	87.1 (3)	C3—C2—C7—C6	0.7 (5)
O2—Sn1—N1—N2	-4.0 (2)	C1—C2—C7—C6	-179.7 (3)
C1—N1—N2—C12	-179.2 (3)	C6—C7—C8—C9	2.1 (6)
Sn1—N1—N2—C12	2.8 (4)	C2—C7—C8—C9	-176.8(4)
$C_{20} = S_{n1} = O_{1} = C_{3}$	-1248(4)	C7 - C8 - C9 - C10	-0.5(7)
C19 = Sn1 = O1 = C3	110 5 (4)	C_{8} C_{9} C_{10} C_{11}	-1.2(7)
02 = 8n1 = 01 = C3	-104(6)	C9-C10-C11-C6	11(6)
N1_Sp1_01_C3	-0.9(4)	C_{5} C_{6} C_{11} C_{10}	1.1(0) 178 8 (4)
01 - Sn1 - 02 - C12	14.6(4)	C_{7} C_{6} C_{11} C_{10}	170.0(4)
$C_{20} = S_{n1} = O_{2} = C_{12}$	128 6 (3)	$S_{n1} = 0^{2} = 0^{12} = N^{2}$	-5.3(4)
$C_{20} = S_{11} = O_2 = C_{12}$	-1060(3)	Sn1 = 02 = C12 = 102	3.3(+) 173.7(2)
$N_1 = N_1 = 02 = C_{12}$	100.0(3)	N1 N2 C12 O2	1/5.7(2)
$N_{1} = S_{11} = O_{2} = C_{12}$	4.7(2)	N1 = N2 = C12 = C12	1.0(3)
$N_2 - N_1 - C_1 - C_2$	1/9.4 (3)	N1 = N2 = C12 = C13	-1//.5(5)
ShI = NI = CI = C2	-2.9(6)	02-012-013-014	1/.9 (5)
NI = CI = C2 = C3	0.5 (6)	$N_2 = C_{12} = C_{13} = C_{14}$	-163.1 (3)
NI = CI = C2 = C7	-1/9.1(3)	02-012-013-018	-160.8 (3)
Sn1—O1—C3—C4	1/9.3 (3)	N2—C12—C13—C18	18.2 (5)
Sn1—O1—C3—C2	-0.8 (6)	C18—C13—C14—C15	-0.1 (5)
C1—C2—C3—O1	1.5 (6)	C12-C13-C14-C15	-178.9 (3)
C7—C2—C3—O1	-179.0 (3)	C13—C14—C15—C16	0.9 (6)
C1—C2—C3—C4	-178.6 (3)	C14—C15—C16—O3	178.8 (3)
C7—C2—C3—C4	1.0 (5)	C14—C15—C16—C17	-0.7 (5)
O1—C3—C4—C5	177.9 (4)	O3—C16—C17—C18	-179.8 (3)
C2—C3—C4—C5	-2.0 (6)	C15—C16—C17—C18	-0.4 (5)
C3—C4—C5—C6	1.3 (6)	C16—C17—C18—C13	1.2 (5)
C4—C5—C6—C11	-177.8 (4)	C14—C13—C18—C17	-1.0 (5)
C4—C5—C6—C7	0.4 (6)	C12-C13-C18-C17	177.8 (3)

Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O3—H3···N2 ⁱ	0.82	2.03	2.802 (4)	158
Symmetry codes: (i) $-x+3/2$, $y-1/2$, $-z+3/2$.				

